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Abstract. A method is presented for finding, in the one-constant theory of nematics, the director
field w that minimizes the free energy of a liquid crystal phase in contact with cylindrical or planar
surfaces imposing appropriate boundary conditiona:orniThe method is employed to find the
resultant forces and moments acting on a long straight rod of radioemersed in a nematic
phase at distanceefrom a flat wall, under the assumption of strong-anchoring boundary conditions
requiringu to be parallel to the rod axis at the rod surface and either (i) perpendicular or (ii) parallel
to the wall at its surface. In both cases the net force on the rod tends to move it away from the wall.
In case (ii) there is a torque on the rod tending to decrease the atgleveen the rod axis and the
direction taken by at the wall. The magnitude of this torque is proportional to [Sé¢li/ p)] ~x,

which for larged / p is asymptotic to a slowly decreasing functiondyfo, namely [IN2d/p)] 1.

It also is shown that there are circumstances in which the method yields information about the
forces acting between parallel rods in a nematic phase.

1. Preliminary observations

Consider a nematic phas¥ whose state is specified by giving a director fieldwith
lu(m)| = 1. As the interfaces betweevi and other phases or materials impose boundary
conditions o, the total free energy of the phas@s affected by the relative position of bodies
that may be immersed in it. It follows that a body immersed in a nematic phase can experience
forces and torques that appear to arise from its interaction with other such bodies and the outer
surfaces of that phase. Such forces have been put into evidence and quantified by physical
experiments [1]. Our aim is to compute analytically these forces in simple configurations.

There is atheory of the transmission of stresses and torques through nematics; it was given
in general formulation by Ericksen [2] and is elaborated with examples and references in the
monograph of de Gennes [3]. We employ little of that theory here, because for the cases we
consider the directions of resultant forces and moments on immersed bodies are evident from
considerations of material symmetry, and hence the crucial step in the calculation of these
resultants is finding the dependence of the equilibrium free energy, df.,, on the bodies’
position and orientation. In this study, emphasis is placed on the problem of finding a director
field that truly minimizes free energy and the investigation of the uniqueness of that field.

We consider cases in whiahis independent of, i.e.u = u(x, y), and we employ the
one-constant theory of nematics in whiehthe ratio of the free-energy density to the elastic
constantk, is [4]

1 2
w = 3|Vul~. (1)
§ Author to whom correspondence should be addressed.
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1178 F Alouges ad B D Coleman

Although this case can appear quite restrictive, the analysis presented below sketches more
realistic situations and permits us to do the calculations to the end. However, it is important
to notice that probably no analytical result given here would survive if this approximation is
dropped.

Thus, the problem of determining stable equilibrium state§ eéduces to one of finding
harmonic maps from a regia in R? into the unit spher&? that minimize the functional

W:W(u):/ w dx dy (2)
Q

with u subject to conditions on the bounda$ of Q. It is shown in [5] that when the energy
is given by (1), and when both the domain and the boundary conditionsiavariant, then
the minimizers are also independentoHence, we typically compute 3D situations.

We coordinates? with a longituded and a latitudep so that the Cartesian coordinates of
u are given by

u* = Cos¢p cosh
u’ = cos¢ sing 3)
u* = sing

and (1) takes the form
2w = |V¢|? +|V6|?co ¢. (4)

We takeS to be a doubly connected open regionRiA whose boundary is the union of
two disjoint curved™* andI"?, and we consider strong anchoring boundary conditions of the
following type. For three constart$, ¢¢, ¢” with 6% in [0, 27), ¢* and¢’ in [—7/2, /2],
andg® # ¢”,

©,.¢)=©%¢"  on I

0, ¢) = (6° ¢") on I, (5)

Our discussion rests on three observations.

Remark 1. The minimizeru, of W on the set of functionsu from Q to S2 that are in
H(Q; $?) and obey (5) is unique. For the minimizetd, ¢) = (6., ¢.), Whered, is a
constant, i.e.

0, =0° in Q (6)
andg, is the solution of the Dirichlet problem

V2p =0 in

¢ =9 on I“ (7)

¢ =" on I’

The minimum value d¥ (u) on€& is
Wmin = W(u*) = %/ |V¢)*|2d)€ dy (8)
Q

To verify the remark, note that the solutign of (7) is unique, and, moreover ¢f is a
function in HY(Q; [—x/2, 7/2]) with ¢, = ¢ 0N, then

fWWWW>fwm%my 9)
Q Q
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unlessp = ¢, in Q. For eachu in &, (4), (6) and (9) yield
2W (u) = /(|v¢|2 +|V6|?cod ¢) dx dy
Q

>/ V|2 dx dy
Q

> / [V, | dx dy = 2W (u,) (10)
Q
where at least one of the two inequalities is strict untessconstant ang equalsp, on Q2.

Remark 2. Let Q; and ©, be two conformally equivalent domains R?, and let f be a
conformal map fronf2; to ©2,. Leth be a given bounded real-valued functionam,, and let
#»®@ solve the problem

V2 =0 in
=g on 9%

with Q@ = Q, andg = h. Then () ¢ = ¢@ o £ is the solution of (11) witl2 = ©; and
g=nho f,and (i) 'Y and¢® have the same Dirichlet energy, i.e.

11)

z N Vo2 dx dy = 3 N IVe@ |2 dx dy. (12)
The conclusion (i) is well known; (ii) may be verified by direct calculation using the
Cauchy—Riemann equations fgr
As we are concerned with cases in whielhas connectivity two and hence is conformally
equivalent to an annulus,

Aé ={(x,y) eR%a? <x2+y? <1} (13)

with 0 < o < 1, our applications of remark 2 involve the solution of the model Dirichlet
problem

V2 =0 in Al
¢ =9 on 9K, (14)
¢ =" on 9K;
where, forv = o and 1,
K, = {(x,y); x*+y* =%, (15)
The solutiong, of (14) is
|
B.0) = @ = ¢ + ! (16)
nNo
and yields
1 / V. 2 ddy = (@ — ¢")?[In(L/e)] (17)
AL

Thus, in view of remarks 1 and 2 we can assert the following.
Remark 3. If Q can be mapped conformally ontg, then the minimum value & on € is
W (u,) = 7[In(L/e)] 5 (18)
with
x=0—¢". (19)
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2. An immersed rod parallel to a planar wall

We consider here the net forces and torques that act on a solid cylindricRl obdadius o
that is immersed in a nematic phasein such a way that each point on the axisfofies at
distancel > p from a planeP that boundsV. We takeP to be the(x, z)-plane andr to be
the set of pointgx, y, z) in R® with x2 + (y — d)? < p2. We suppose that the only bounding
surfaces of\V areP and the cylindrical surface 6. Thus

Q={(x,y);y>0,x2+(y—d)?> p% (20)
anda = I' U I'? with

I = {(x,y); X2+ (y — d)* = p?) (21)

I’ ={(x,y);y=0}. (22)

We assume that the surface of the rod and the planar wall each impose a strong-anchoring
boundary condition om.

We assume that at the rod surfacés parallel to the rod axis, which means that at that
surface(u®, u”, u?) = (0,0, 1), andw is at the north pole o2. In other words, orl™“ the
latitude¢ of u is /2 and the longitudé is undefined.

As regards the planar wa, let us first assume that is perpendicular to, i.e. that
w*, u, u?) = (0,1,0) onT?, so that we have

¢ =m/2 on I“
$»=0 and 0=m/2 on I’.

Clearly, in this case the minimizer &% on £ hasé = 7/2 on all of 2, and we may use
equation (18) of remark 3 with = 7 /2:

(23)

T(3
W(w) = - [In(3/e)] ™ (24)
Wheng is given by (20), the rational complex-variable function
¢ —io _ .
w(¢) = [+ {=x+iy (25)
with
o = [d2 _ ,02]1/2 (26)

conformally maps2 onto the annulug? in such a way that the linE” goes to the circlek,
and the circld™® goes to the circl&K,. In particular, the poink = « is the image of the point
=i(d+p),i.e.a =w(d+ip) = p/(d + o), which yields

_[d-o 1/2_ s P 7
YTldtre | T1ra—s2e2 T 27

For the boundary conditions (23), placement of (27) in (24) yields the following
expressions for the equilibrium free energy of the ph(sas a function¥,, of s:

1+(1— s2)1/2>:|1

N

1 3
Wey(5) = kW (w,) = Zk® | In

3
- ]%[sech’l(s)]‘l. (28)

Itis clear that in this case there is no torque aboubtais, but there is a force dR tending
to increasel, i.e. tending to move the rod away from the surf@evhich we consider to be
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fixed. Indeed, the net force gt (per unitlength ofk) has a component only in thedirection
and is

0 km® 2\-1/2 1, N2
F= _ﬁweq(p/d) = E(l_ 59 [sech > (s)] = (29)
In the limit asd — oo with p fixed,
km®
"Ijeq ~ T[In(Zd/p)]_l (30)
and
F kns[ln(zd/ )2 (31)
4d P

Let us assume again that at the surfac® ahe directoru is parallel to the axis oR, i.e.
to thez-axis, but now assume that &t i.e. at the(x, z)-plane,u is parallel toP? and hence
hasf = 0. Each specification af at P, i.e. of¢”, now gives us an orientation, relative to the
z-axis, for the preferred direction in the plaRe Thus we assume that

p=9¢"=m/2 on I

¢ =" and 6=0 on I? (32)
and we note that
T
x==—¢" (33)

2

is now the angle between the axis of the rod and the preferred direction in the plan@x. wall
For the minimizeru, of W we here hav® = 0 on all of 2. The equations (25)-(27) hold
again, but in place of (24) and (28), we have, by (18) and (27),

Wy (s, x) = kW (u,) = kr[In(1/e)] ~*x? = krr[sech *(s)] ~*x* (34)
with s again(p/d). For the force in the-direction we have
F= —%weq(p/d, X) = %(1 — s~ Ysectri(s)] 1 (35)

which is, of course, zero when the rod lies parallel to the preferred direction, i.e.yvbed;
F is a maximum, equal to the last expression on the right-hand side in (29), when the rod and
the preferred direction are perpendicular, i.e. whes- /2. The turning moment on the
rod (which acts about the-axis and tends to align the rod with the preferred direction) is the
integral ofm along the length of the rod, whereis given by

ad

m = _B_\I"eq(sa X) = _an[seCh_l(s)]ilX (36)

X
and hence is proportional tp and independent of. The asymptotic forms of the equations
(34)—(36) for the limit larg&d/ p) are

W, ~ kr[In(2d/p)] "t x? (37)
F~ @/ p1 2 (38)
m ~ —2kz[In2d/p)] x. (39)

It is interesting that whed is large compared with, m decays slowly with increasing.
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3. Two parallel rods

We now consider two parallel cylindrical ro®?, R?, with radii p,, 05, Which are immersed
in a nematic with axial separatioR and which have surfaces imposing different constant
strong-anchoring boundary conditions@nThus here

Q= {(x,y); x2+y% > pZ, (x — R)2+y? > p?} (40)
andoQ = I'* U I'? with

T = {(x,y); x2+y? = p2} = K, (41)
I ={(x,y); (x — R)2+y* = p?}. (42)

At the surface ofR?, u is assumed to be parallel to the axisif, (i.e. to be parallel to the
z-axis which means at the north poles® and hence has no defined longitude. At the surface
of R”, u is assumed to be in the plane perpendicular to the axi@ df.e. to be parallel to the
(x, y)-plane which means on the equatoséj and to have a constant longituge Therefore,

¢ =m/2 on I¢

$»=0 and 6 =6° on I’ (43)

and the minimizer oW on £ hash = 0° on all of Q. Although we agree that these boundary
conditions are not very physically realistic, they allow us to naturally extend our analysis to
that case. Equation (18) with = /2, i.e. equation (24), holds again. To find the pertinent
value ofa we note that the domaif2 of (40) is conformally mapped intd? by the function

@)= 282 sy (44)
Pa (; - 0-2)
with o1 ando, obeying the equations
o02=p;  (R—0)(R—02) = pj (45)

and witho, chosen so that the formula

_ P
Pa
yieldsa = 1. It follows from (44) thatw (I'*) = K; andw (I'?) = K, .
We are interested in the limit in which the separation of the rods is large compared with
their radii, i.e. in which

02
o

R0 (46)

_(Papp\1/?
ﬁ—( R2) <1 47)
In that limit (46) yieldse = g2 + O(8*%), and hence, by remark 3,
k3 1 k3 R -1

There is a net force on each rod tending to separate it from the other rod. This force of repulsion
has a component only on theaxis, and, for the limit of large separation, its magnitude per
unit of rod length is

B} knd R -1
F=—— W, ~—|In[——0 . 49
aR " 8R [n ((paph)W)] (49)
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