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Abstract. A method is presented for finding, in the one-constant theory of nematics, the director
fieldu that minimizes the free energy of a liquid crystal phase in contact with cylindrical or planar
surfaces imposing appropriate boundary conditions onu. The method is employed to find the
resultant forces and moments acting on a long straight rod of radiusρ immersed in a nematic
phase at distanced from a flat wall, under the assumption of strong-anchoring boundary conditions
requiringu to be parallel to the rod axis at the rod surface and either (i) perpendicular or (ii) parallel
to the wall at its surface. In both cases the net force on the rod tends to move it away from the wall.
In case (ii) there is a torque on the rod tending to decrease the angleχ between the rod axis and the
direction taken byu at the wall. The magnitude of this torque is proportional to [sech−1(d/ρ)]−1χ ,
which for larged/ρ is asymptotic to a slowly decreasing function ofd/ρ, namely [ln(2d/ρ)]−1χ .
It also is shown that there are circumstances in which the method yields information about the
forces acting between parallel rods in a nematic phase.

1. Preliminary observations

Consider a nematic phaseN whose state is specified by giving a director fieldu with
|u(m)| = 1. As the interfaces betweenN and other phases or materials impose boundary
conditions onu, the total free energy of the phaseN is affected by the relative position of bodies
that may be immersed in it. It follows that a body immersed in a nematic phase can experience
forces and torques that appear to arise from its interaction with other such bodies and the outer
surfaces of that phase. Such forces have been put into evidence and quantified by physical
experiments [1]. Our aim is to compute analytically these forces in simple configurations.

There is a theory of the transmission of stresses and torques through nematics; it was given
in general formulation by Ericksen [2] and is elaborated with examples and references in the
monograph of de Gennes [3]. We employ little of that theory here, because for the cases we
consider the directions of resultant forces and moments on immersed bodies are evident from
considerations of material symmetry, and hence the crucial step in the calculation of these
resultants is finding the dependence of the equilibrium free energy ofN , 9eq , on the bodies’
position and orientation. In this study, emphasis is placed on the problem of finding a director
field that truly minimizes free energy and the investigation of the uniqueness of that field.

We consider cases in whichu is independent ofz, i.e.u = u(x, y), and we employ the
one-constant theory of nematics in whichw, the ratio of the free-energy density to the elastic
constantk, is [4]

w = 1
2|∇u|2. (1)
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Although this case can appear quite restrictive, the analysis presented below sketches more
realistic situations and permits us to do the calculations to the end. However, it is important
to notice that probably no analytical result given here would survive if this approximation is
dropped.

Thus, the problem of determining stable equilibrium states ofN reduces to one of finding
harmonic maps from a region� in R2 into the unit sphereS2 that minimize the functional

W = W(u) =
∫
�

w dx dy (2)

with u subject to conditions on the boundary∂� of�. It is shown in [5] that when the energy
is given by (1), and when both the domain and the boundary conditions arez-invariant, then
the minimizers are also independent ofz. Hence, we typically compute 3D situations.

We coordinateS2 with a longitudeθ and a latitudeφ so that the Cartesian coordinates of
u are given by

ux = cosφ cosθ

uy = cosφ sinθ

uz = sinφ

(3)

and (1) takes the form

2w = |∇φ|2 + |∇θ |2 cos2 φ. (4)

We take� to be a doubly connected open region inR2 whose boundary∂� is the union of
two disjoint curves0a and0b, and we consider strong anchoring boundary conditions of the
following type. For three constantsθ0, φa, φb with θ0 in [0, 2π), φa andφb in [−π/2, π/2],
andφa 6= φb,

(θ, φ) = (θ0, φa) on 0a

(θ, φ) = (θ0, φb) on 0b.
(5)

Our discussion rests on three observations.

Remark 1. The minimizeru∗ of W on the setE of functionsu from � to S2 that are in
H 1(�; S2) and obey (5) is unique. For the minimizer:(θ, φ) = (θ∗, φ∗), whereθ∗ is a
constant, i.e.

θ∗ = θ0 in � (6)

andφ∗ is the solution of the Dirichlet problem

∇2φ = 0 in �

φ = φa on 0a

φ = φb on 0b.

(7)

The minimum value ofW(u) onE is

Wmin = W(u∗) = 1
2

∫
�

|∇φ∗|2 dx dy. (8)

To verify the remark, note that the solutionφ∗ of (7) is unique, and, moreover ifφ is a
function inH 1(�; [−π/2, π/2]) with φ∗ = φ on ∂�, then∫

�

|∇φ|2 dx dy >
∫
�

|∇φ∗|2 dx dy (9)



Forces on solid bodies immersed in nematic phases 1179

unlessφ = φ∗ in �. For eachu in E , (4), (6) and (9) yield

2W(u) =
∫
�

(|∇φ|2 + |∇θ |2 cos2 φ) dx dy

>
∫
�

|∇φ|2 dx dy

>
∫
�

|∇φ∗|2 dx dy = 2W(u∗) (10)

where at least one of the two inequalities is strict unlessθ is constant andφ equalsφ∗ on�.

Remark 2. Let �1 and�2 be two conformally equivalent domains inR2, and letf be a
conformal map from�1 to�2. Leth be a given bounded real-valued function on∂�2, and let
φ(2) solve the problem

∇2φ = 0 in �

φ = g on ∂�
(11)

with� = �2 andg = h. Then (i) φ(1) = φ(2) ◦ f is the solution of (11) with� = �1 and
g = h ◦ f , and (ii) φ(1) andφ(2) have the same Dirichlet energy, i.e.

1
2

∫
�1

|∇φ(1)|2 dx dy = 1
2

∫
�2

|∇φ(2)|2 dx dy. (12)

The conclusion (i) is well known; (ii) may be verified by direct calculation using the
Cauchy–Riemann equations forf .

As we are concerned with cases in which� has connectivity two and hence is conformally
equivalent to an annulus,

A1
α = {(x, y) ∈ R2;α2 < x2 + y2 < 1} (13)

with 0 < α < 1, our applications of remark 2 involve the solution of the model Dirichlet
problem

∇2φ = 0 in A1
α

φ = φa on ∂Kα

φ = φb on ∂K1

(14)

where, forν = α and 1,

Kν = {(x, y); x2 + y2 = ν2}. (15)

The solutionφ∗ of (14) is

φ∗(r) = (φa − φb) ln r

ln α
+ φb (16)

and yields

1
2

∫
A1
α

|∇φ∗|2 dx dy = π(φa − φb)2[ln(1/α)]−1. (17)

Thus, in view of remarks 1 and 2 we can assert the following.

Remark 3. If � can be mapped conformally ontoA1
α, then the minimum value ofW onE is

W(u∗) = π [ln(1/α)]−1χ2 (18)

with

χ = φa − φb. (19)
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2. An immersed rod parallel to a planar wall

We consider here the net forces and torques that act on a solid cylindrical rodR of radiusρ
that is immersed in a nematic phaseN in such a way that each point on the axis ofR lies at
distanced > ρ from a planeP that boundsN . We takeP to be the(x, z)-plane andR to be
the set of points(x, y, z) in R3 with x2 + (y − d)2 < ρ2. We suppose that the only bounding
surfaces ofN areP and the cylindrical surface ofR. Thus

� = {(x, y); y > 0, x2 + (y − d)2 > ρ2} (20)

and∂� = 0a ∪ 0b with

0a = {(x, y); x2 + (y − d)2 = ρ2} (21)

0b = {(x, y); y = 0}. (22)

We assume that the surface of the rod and the planar wall each impose a strong-anchoring
boundary condition onu.

We assume that at the rod surfaceu is parallel to the rod axis, which means that at that
surface(ux, uy, uz) = (0, 0, 1), andu is at the north pole ofS2. In other words, on0a the
latitudeφ of u is π/2 and the longitudeθ is undefined.

As regards the planar wallP, let us first assume thatu is perpendicular toP, i.e. that
(ux, uy, uz) = (0, 1, 0) on0b, so that we have

φ = π/2 on 0a

φ = 0 and θ = π/2 on 0b.
(23)

Clearly, in this case the minimizer ofW on E hasθ = π/2 on all of�, and we may use
equation (18) of remark 3 withχ = π/2:

W(u∗) = π3

4
[ln(1/α)]−1. (24)

When� is given by (20), the rational complex-variable function

ω(ζ ) = ζ − iσ

ζ + iσ
ζ = x + iy (25)

with

σ = [d2 − ρ2]1/2 (26)

conformally maps� onto the annulusA1
α in such a way that the line0b goes to the circleK1,

and the circle0a goes to the circleKα. In particular, the pointω = α is the image of the point
ζ = i(d + ρ), i.e.α = ω(id + iρ) = ρ/(d + σ), which yields

α =
[
d − σ
d + σ

]1/2

= s

1 + (1− s2)1/2
s = ρ

d
. (27)

For the boundary conditions (23), placement of (27) in (24) yields the following
expressions for the equilibrium free energy of the phaseN as a function9eq of s:

9eq(s) = kW(u∗) = 1

4
kπ3

[
ln

(
1 + (1− s2)1/2

s

)]−1

= kπ3

4
[sech−1(s)]−1. (28)

It is clear that in this case there is no torque about they-axis, but there is a force onR tending
to increased, i.e. tending to move the rod away from the surfaceP, which we consider to be
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fixed. Indeed, the net force onR (per unit length ofR) has a component only in they-direction
and is

F = − ∂

∂d
9eq(ρ/d) = kπ3

4d
(1− s2)−1/2[sech−1(s)]−2. (29)

In the limit asd →∞ with ρ fixed,

9eq ∼ kπ3

4
[ln(2d/ρ)]−1 (30)

and

F ∼ kπ3

4d
[ln(2d/ρ)]−2. (31)

Let us assume again that at the surface ofR the directoru is parallel to the axis ofR, i.e.
to thez-axis, but now assume that atP, i.e. at the(x, z)-plane,u is parallel toP and hence
hasθ = 0. Each specification ofφ atP, i.e. ofφb, now gives us an orientation, relative to the
z-axis, for the preferred direction in the planeP. Thus we assume that

φ = φa = π/2 on 0a

φ = φb and θ = 0 on 0b
(32)

and we note that

χ = π

2
− φb (33)

is now the angle between the axis of the rod and the preferred direction in the planar wallP.
For the minimizeru∗ of W we here haveθ = 0 on all of�. The equations (25)–(27) hold
again, but in place of (24) and (28), we have, by (18) and (27),

9eq(s, χ) = kW(u∗) = kπ [ln(1/α)]−1χ2 = kπ [sech−1(s)]−1χ2 (34)

with s again(ρ/d). For the force in they-direction we have

F = − ∂

∂d
9eq(ρ/d, χ) = π

d
(1− s2)−1/2[sech−1(s)]−2χ2 (35)

which is, of course, zero when the rod lies parallel to the preferred direction, i.e. whenχ = 0;
F is a maximum, equal to the last expression on the right-hand side in (29), when the rod and
the preferred direction are perpendicular, i.e. whenχ = π/2. The turning moment on the
rod (which acts about they-axis and tends to align the rod with the preferred direction) is the
integral ofm along the length of the rod, wherem is given by

m = − ∂

∂χ
9eq(s, χ) = −2kπ [sech−1(s)]−1χ (36)

and hence is proportional toχ and independent ofz. The asymptotic forms of the equations
(34)–(36) for the limit large(d/ρ) are

9eq ∼ kπ [ln(2d/ρ)]−1χ2 (37)

F ∼ kπ

d
[ln(2d/ρ)]−2χ2 (38)

m ∼ −2kπ [ln(2d/ρ)]−1χ. (39)

It is interesting that whend is large compared withρ,m decays slowly with increasingd.
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3. Two parallel rods

We now consider two parallel cylindrical rodsRa,Rb, with radiiρa, ρb, which are immersed
in a nematic with axial separationR and which have surfaces imposing different constant
strong-anchoring boundary conditions onu. Thus here

� = {(x, y); x2 + y2 > ρ2
a , (x − R)2 + y2 > ρ2

b } (40)

and∂� = 0a ∪ 0b with

0a = {(x, y); x2 + y2 = ρ2
a } = Kρa (41)

0a = {(x, y); (x − R)2 + y2 = ρ2
b }. (42)

At the surface ofRa, u is assumed to be parallel to the axis ofRa, (i.e. to be parallel to the
z-axis which means at the north pole ofS2) and hence has no defined longitude. At the surface
ofRb, u is assumed to be in the plane perpendicular to the axis ofRb (i.e. to be parallel to the
(x, y)-plane which means on the equator ofS2) and to have a constant longitudeθ0. Therefore,

φ = π/2 on 0a

φ = 0 and θ = θ0 on 0b
(43)

and the minimizer ofW onE hasθ = θ0 on all of�. Although we agree that these boundary
conditions are not very physically realistic, they allow us to naturally extend our analysis to
that case. Equation (18) withχ = π/2, i.e. equation (24), holds again. To find the pertinent
value ofα we note that the domain� of (40) is conformally mapped intoA1

α by the function

ω(ζ ) = σ2(ζ − σ1)

ρa(ζ − σ2)
ζ = x + iy (44)

with σ1 andσ2 obeying the equations

σ1σ2 = ρ2
a (R − σ1)(R − σ2) = ρ2

b (45)

and withσ2 chosen so that the formula

α = ρb

ρa

∣∣∣∣ σ2

R − σ2

∣∣∣∣ (46)

yieldsα = 1. It follows from (44) thatω(0a) = K1 andω(0a) = Kα.
We are interested in the limit in which the separation of the rods is large compared with

their radii, i.e. in which

β =
(ρaρb
R2

)1/2
� 1. (47)

In that limit (46) yieldsα = β2 + O(β4), and hence, by remark 3,

9eq = kπ3

4
[ln(1/α)]−1 ∼ kπ3

8

[
ln

(
R

(ρaρb)1/2

)]−1

. (48)

There is a net force on each rod tending to separate it from the other rod. This force of repulsion
has a component only on thex-axis, and, for the limit of large separation, its magnitude per
unit of rod length is

F = − ∂

∂R
9eq ∼ kπ3

8R

[
ln

(
R

(ρaρb)1/2

)]−1

. (49)
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